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tDomain-spe
i�
 sear
h engines are be
omingin
reasingly popular be
ause they o�er in-
reased a

ura
y and extra features not pos-sible with general, Web-wide sear
h engines.Unfortunately, they are also diÆ
ult and time-
onsuming to maintain. This paper proposesthe use of ma
hine learning te
hniques togreatly automate the 
reation and maintenan
eof domain-spe
i�
 sear
h engines. We des
ribenew resear
h in reinfor
ement learning, text
lassi�
ation and information extra
tion thatenables eÆ
ient spidering, populates topi
 hi-erar
hies, and identi�es informative text seg-ments. Using these te
hniques, we have builta demonstration system: a sear
h engine for
omputer s
ien
e resear
h papers available atwww.
ora.justresear
h.
om.1 Introdu
tionAs the amount of information on the World Wide Webgrows, it be
omes in
reasingly diÆ
ult to �nd just whatwe want. While general-purpose sear
h engines su
h asAltavista and HotBot o�er high 
overage, they often pro-vide only low pre
ision, even for detailed queries.When we know that we want information of a 
er-tain type, or on a 
ertain topi
, a domain-spe
i�
sear
h engine 
an be a powerful tool. For exam-ple, www.
ampsear
h.
om allows 
omplex queries oversummer 
amps by age-group, size, lo
ation and 
ost.Performing su
h sear
hes with a traditional, general-purpose sear
h engine would be extremely tedious orimpossible. For this reason, domain-spe
i�
 sear
h en-gines are be
oming in
reasingly popular. Unfortunately,building these sear
h engines is a labor-intensive pro
ess,typi
ally requiring signi�
ant and ongoing human e�ort.This paper des
ribes the Ra Proje
t|an e�ort to auto-mate many aspe
ts of 
reating and maintaining domain-spe
i�
 sear
h engines by using ma
hine learning te
h-niques. These te
hniques allow sear
h engines to be
reated qui
kly with minimal e�ort, and are suited forre-use a
ross many domains. This paper presents ma-
hine learning methods for eÆ
ient topi
-dire
ted spider-

ing, building a browsable topi
 hierar
hy, and extra
tingtopi
-relevant substrings. These are brie
y des
ribed inthe following three paragraphs.Every sear
h engine must begin with a 
olle
tionof do
uments to index. When aiming to populate adomain-spe
i�
 sear
h engine, a web-
rawling spiderneed not explore the Web indis
riminantly, but shouldexplore in a dire
ted fashion to �nd domain-relevant do
-uments eÆ
iently. We frame the spidering task in a rein-for
ement learning framework [Kaelbling et al., 1996℄, al-lowing us to mathemati
ally de�ne \optimal behavior."Our experimental results show that a simple reinfor
e-ment learning spider is three times more eÆ
ient than aspider using breadth-�rst sear
h.Sear
h engines often provide a browsable topi
 hierar-
hy; Yahoo is the prototypi
al example. Automati
allyadding do
uments into a topi
 hierar
hy 
an be posed asa text 
lassi�
ation task. We present extensions to thenaive Bayes text 
lassi�er (e.g. [M
Callum et al., 1998℄)that use no hand-labeled training data, yet still resultin a

urate 
lassi�
ation. With unlabeled data, the hi-erar
hy and a few keywords for ea
h 
ategory, the algo-rithm 
ombines naive Bayes, hierar
hi
al shrinkage andExpe
tation-Maximization. It pla
es do
uments into a70-leaf 
omputer s
ien
e hierar
hy with 66% a

ura
y|performan
e approa
hing human agreement levels.Extra
ting topi
-relevant pie
es of information fromthe do
uments of a domain-spe
i�
 sear
h engine al-lows the user to sear
h over these features in a way thatgeneral sear
h engines 
annot. Information extra
tion,the pro
ess of automati
ally �nding spe
i�
 textual sub-strings in a do
ument, is well suited to this task. Weapproa
h information extra
tion with te
hniques usedin statisti
al language modeling and spee
h re
ognition,namely hidden Markov models [Rabiner, 1989℄. Our al-gorithm extra
ts �elds su
h as title, authors, and aÆlia-tion from resear
h paper headers with 91% a

ura
y.We have brought all the above-des
ribed ma
hinelearning te
hniques together in Cora, a publi
ly-availablesear
h engine on 
omputer s
ien
e resear
h papers(www.
ora.justresear
h.
om). An intelligent spider startsfrom the home pages of 
omputer s
ien
e departmentsand laboratories and 
olle
ts links to posts
ript do
u-ments. These do
uments are 
onverted to plain text
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Figure 1: A s
reen shot of the query results page of theCora sear
h engine. Note the topi
 hierar
hy and theextra
ted paper titles, authors and abstra
ts.and further pro
essed if they are determined to be re-sear
h papers (e.g. by having Abstra
t and Referen
ese
tions). Important identifying information su
h as thetitle and author is then extra
ted from the head of ea
hpaper, as well as the bibliography se
tion. The extra
tedresults are used to group 
itations to the same papertogether and to build a 
itation graph. Phrase andkeyword sear
h fa
ilities over the 
olle
ted papers areprovided, as well as a 
omputer s
ien
e topi
 hierar
hywhi
h lists the most-
ited papers in ea
h resear
h topi
.Figure 1 shows the results of a sear
h query as well as thetopi
 hierar
hy. Our hope is that, in addition to provid-ing a platform for ma
hine learning resear
h, this sear
hengine will be
ome a valuable tool for other 
omputers
ientists. The following se
tions des
ribe the new re-sear
h that makes Cora possible; more detail is providedin M
Callum et al. [1999℄ and by other papers availableat Cora's web page.2 EÆ
ient SpideringIn Cora, eÆ
ient spidering is a signi�
ant 
on
ern. Manyof the pages in CS department web sites are about
ourses and administration, not resear
h papers. Whilea general-purpose sear
h engine should index all pages,and might use breadth-�rst sear
h to 
olle
t do
uments,Cora need only index a small subset. Avoiding wholeregions of departmental web graphs 
an signi�
antly im-prove eÆ
ien
y and in
rease the number of resear
h pa-pers found given a �nite amount of time.For a formal setting in whi
h to frame the problem

of eÆ
ient spidering, we turn to reinfor
ement learn-ing. Reinfor
ement learning is a framework for learn-ing optimal de
ision making from rewards or punishment[Kaelbling et al., 1996℄. The agent learns a poli
y thatmaps states to a
tions in an e�ort to maximize its re-ward over time. We use the in�nite-horizon dis
ountedmodel where reward over time is a geometri
ally dis-
ounted sum in whi
h the dis
ount, 0 � 
 < 1, devaluesrewards re
eived in the future. A Q-fun
tion repre-sents the poli
y by mapping state-a
tion pairs to theirexpe
ted dis
ounted reward. Poli
y de
isions are madeby sele
ting the a
tion with the largest Q-value.As an aid to understanding how reinfor
ement learn-ing relates to spidering, 
onsider the 
ommon reinfor
e-ment learning task of a mouse exploring a maze to �ndseveral pie
es of 
heese. The agent re
eives immediatereward for �nding ea
h pie
e of 
heese, and has a
tionsfor moving among the grid squares of the maze. Thestate is both the position of the mouse and the lo
ationsof the 
heese pie
es remaining to be 
onsumed (sin
e the
heese 
an only be 
onsumed and provide reward on
e).Note that in order to a
t optimally, the agent must 
on-sider future rewards.In the spidering task, the on-topi
 do
uments are im-mediate rewards, like the pie
es of 
heese. The a
tionsare following a parti
ular hyperlink. The state is the setof on-topi
 do
uments remaining to be 
onsumed, andthe set of a
tions that have been dis
overed. The key fea-ture of topi
-spe
i�
 spidering that makes reinfor
ementlearning the proper framework is that the environmentpresents situations with delayed reward.The problem now is how to pra
ti
ally apply reinfor
e-ment learning to spidering. The state-spa
e is enormousand does not allow the spider to generalize to hyperlinksthat it has not already seen. Hen
e, we make simplify-ing assumptions that (1) disregard state and (2) 
apturethe relevant distin
tions between a
tions as the wordsfound in the neighborhood of the 
orresponding hyper-link. Thus our Q-fun
tion be
omes a mapping from a\bag-of-words" to a s
alar.We represent the mapping using a 
olle
tion of naiveBayes text 
lassi�ers (see Se
tion 3.1), and 
ast this re-gression problem as 
lassi�
ation. We dis
retize the dis-
ounted sum of future reward values of our training datainto bins, pla
e ea
h hyperlink into the bin 
orrespond-ing to its Q-value (
al
ulated as des
ribed below), anduse the text in the hyperlink's an
hor and surroundingpage as training data for the 
lassi�er. At test time, theestimated Q-value of a hyperlink is the weighted aver-age of ea
h bin's average Q-value, using the 
lassi�er'sprobabilisti
 
lass memberships as weights.Other systems have also studied spidering, but with-out a framework de�ning optimal behavior. For exam-ple, Ara
hnid [Men
zer, 1997℄ does so with a 
olle
tionof 
ompetitive, reprodu
ing and mutating agents. Addi-tionally, there are systems that use reinfor
ement learn-ing for non-spidering Web tasks. WebWat
her [Joa
himset al., 1997℄ is a browsing assistant that uses a 
ombina-tion of supervised and reinfor
ement learning to re
om-
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Figure 2: Performan
e of two reinfor
ement learningspiders versus traditional breadth-�rst sear
h, averagedover four test/train splits with data from four CS de-partments.mend relevant hyperlinks to the user.2.1 Experimental ResultsIn August 1998 we fully mapped the CS department websites at Brown University, Cornell University, Universityof Pittsburgh and University of Texas. They in
lude53,012 do
uments and 592,216 hyperlinks. We performfour test/train splits, where the data from three univer-sities is used to train a spider that is tested on the fourth.The target pages (for whi
h a reward of 1 is given) are
omputer s
ien
e resear
h papers, identi�ed separatelyby a simple hand-
oded algorithm with high pre
ision.We 
urrently train the agent o�-line. We �nd all tar-get pages in the training data, and 
al
ulate the Q-valueasso
iated with ea
h hyperlink as the dis
ounted sumof rewards that result from exe
uting the optimal pol-i
y (as determined by full knowledge of the web graph).The agent 
ould also learn from experien
e on-line us-ing TD-�. A spider is evaluated on ea
h test/train splitby having it spider the test university, starting at thedepartment's home page. In Figure 2 we report resultsfrom traditional Breadth-First sear
h as well as two dif-ferent reinfor
ement learners. Immediate uses 
 = 0,and represents the Q-fun
tion as a binary 
lassi�er thatonly distinguishes immediate reward a
tions. Future uses
 = 0:5, and represents the Q-fun
tion with a more�nely-dis
riminating 3-bin 
lassi�er that uses future re-wards.At all times during its progress, both reinfor
ementlearning spiders have found more resear
h papers thanbreadth-�rst sear
h. One measure of performan
e is thenumber of hyperlinks followed before 75% of the resear
hpapers are found. Both reinfor
ement learners are signif-i
antly more eÆ
ient, requiring exploration of less than16% of the hyperlinks; in 
omparison, Breadth-�rst re-quires 48%. This represents a fa
tor of three in
rease inspidering eÆ
ien
y.Note that the Future reinfor
ement learning spider

performs better than the Immediate spider in the begin-ning, when future reward must be used to sele
t amongalternative bran
hes, none of whi
h give immediate re-ward. On average the Immediate spider takes nearlythree times as long as Future to �nd the �rst 28 (5%)of the papers. We have also run experiments on taskswith a single target page, where future reward de
isionsare more 
ru
ial. In this 
ase, the Future spider retrievestarget pages twi
e as eÆ
iently as the Immediate spider[Rennie and M
Callum, 1999℄. In Figure 2, after the�rst 50% of the papers are found, the Immediate spi-der performs slightly better, be
ause many links withimmediate reward have been dis
overed, and the Imme-diate spider re
ognizes them more a

urately. In ongoingwork we are improving the a

ura
y of the 
lassi�
ationwhen there is future reward and a larger number of bins.3 Classi�
ation into a Hierar
hy byBootstrapping with KeywordsTopi
 hierar
hies are an eÆ
ient way to organize andview large quantities of information that would other-wise be 
umbersome. As Yahoo has shown, a topi
hierar
hy 
an be an integral part of a sear
h engine. ForCora, we have 
reated a 70-leaf hierar
hy of 
omputer s
i-en
e topi
s, the top part of whi
h is shown in Figure 1.Creating the hierar
hy stru
ture and sele
ting just a fewkeywords asso
iated with ea
h node took about threehours, during whi
h an expert examined 
onferen
e pro-
eedings and 
omputer s
ien
e Web sites.A mu
h more diÆ
ult and time-
onsuming part of 
re-ating a hierar
hy is pla
ing do
uments into the 
orre
ttopi
 nodes. Yahoo has hired many people to 
atego-rize web pages into their hierar
hy. In 
ontrast, ma-
hine learning 
an automate this task with supervisedtext 
lassi�
ation. However, a
quiring enough labeledtraining do
uments to build an a

urate 
lassi�er is of-ten prohibitively expensive.In this paper, we ease the burden on the 
lassi�erbuilder by using only unlabeled data, some keywordsand the 
lass hierar
hy. Instead of asking the builderto hand-label training examples, the builder simply pro-vides a few keywords for ea
h 
ategory. A large 
olle
tionof unlabeled do
uments are then preliminarily labeledby using the keywords as a rule-list 
lassi�er (sear
hinga do
ument for ea
h keyword and pla
ing it in the 
lassof the �rst keyword found). These preliminary labelsare noisy, and many do
uments remain unlabeled. How-ever, we then bootstrap an improved 
lassi�er. Using thedo
uments and preliminary labels, we initialize a naiveBayes text 
lassi�er from the preliminary labels. Then,Expe
tation-Maximization [Dempster et al., 1977℄ esti-mates labels of unlabeled do
uments and re-estimateslabels of keyword-labeled do
uments. Statisti
al shrink-age is also in
orporated in order to improve parameterestimates by using the 
lass hierar
hy. In this paper we
ombine for the �rst time in one do
ument 
lassi�er bothEM for unlabeled data and hierar
hi
al shrinkage.
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3.1 Bayesian Text Classi�
ationWe use the framework of multinomial naive Bayes text
lassi�
ation. The parameters of this model are, for ea
h
lass 
j , the frequen
y with whi
h ea
h word wt o

urs,P(wtj
j), and the relative do
ument frequen
y of ea
h
lass, P(
j). Given estimates of these parameters and ado
ument di, we 
an determine the probability that itbelongs in 
lass 
j by Bayes' rule:P(
j jdi) / P(
j) jdijYk=1P(wdik j
j); (1)where wdik is the word wt that o

urs in the kth posi-tion of do
ument di. Training a standard naive Bayes
lassi�er requires a set of do
uments, D, and their 
lasslabels. The estimate of a word frequen
y is simply thesmoothed frequen
y with whi
h the word o

urs in train-ing do
uments from the 
lass:P(wtj
j)= 1 +Pdi2DN(wt; di)P(
j jdi)jV j+PjV js=1Pdi2DN(ws; di)P(
j jdi) ; (2)where N(wt; di) is the number of times word wt o

ursin do
ument di, P(
j jdi) is an indi
ator of whether do
-ument di belongs in 
lass 
j , and jV j is the number ofwords in the vo
abulary. Similarly, the 
lass frequen-
ies P(
j) are smoothed do
ument frequen
ies estimatedfrom the data.When a 
ombination of labeled and unlabeled data isavailable, past work has shown that naive Bayes param-eter estimates 
an be improved by using EM to 
ombineeviden
e from all the data [Nigam et al., 1999℄. In ourbootstrapping approa
h, an initial naive Bayes modelis estimated from the preliminarily-labeled data. ThenEM iterates until 
onvergen
e (1) labeling all the data(Equation 1) and (2) rebuilding a model with all the data(Equation 2). The preliminary labels serve to provide agood starting point; EM then in
orporates the unlabeleddata and re-estimates the preliminary labels.When the 
lasses are organized hierar
hi
ally, as is our
ase, naive Bayes parameter estimates 
an be improvedwith the statisti
al te
hnique shrinkage [M
Callum etal., 1998℄. New word frequen
y parameter estimates fora 
lass are 
al
ulated by a weighted average between the
lass's lo
al estimates, and estimates of its an
estors inthe hierar
hy (ea
h formed by pooling data from all thean
estor's 
hildren). The te
hnique balan
es a trade-o� between the spe
i�
ity of the unreliable lo
al wordfrequen
y estimates and the reliability of the more gen-eral an
estor's frequen
y estimates. The optimal mix-ture weights for the weighted average are 
al
ulated byEM 
on
urrently with the 
lass labels.3.2 Experimental ResultsNow we des
ribe results of 
lassifying 
omputer s
ien
eresear
h papers into our 70-leaf hierar
hy. A test setwas 
reated by hand-labeling a random sample of 625resear
h papers from the 30,682 papers formerly 
om-prising the entire Cora ar
hive. Of these, 225 did not �t

into any 
ategory, and were dis
arded. In these experi-ments, we used the title, author, institution, referen
es,and abstra
ts of papers for 
lassi�
ation, not the fulltext.Traditional naive Bayes with 400 labeled training do
-uments, tested in a leave-one-out fashion, results in 47%
lassi�
ation a

ura
y. However, less than 100 do
u-ments 
ould have been hand-labeled in the 90 minutesit took to 
reate the keyword-lists; using this smallertraining set results in only 30% a

ura
y. The rule-list
lassi�er based on the keywords alone provides 45%. Wenow turn to our bootstrap approa
h. When these noisylabels are used to train a traditional naive Bayes text
lassi�er, 47% a

ura
y is rea
hed on the test set. Thefull algorithm, in
luding EM and hierar
hi
al shrinkage,a
hieves 66% a

ura
y. As an interesting 
omparison,human agreement between two people on the test setwas 72%.These results demonstrate the utility of the boot-strapping approa
h. Keyword mat
hing alone is noisy,but when naive Bayes and EM are used together asa regularizer, the resulting 
lassi�
ation a

ura
y is
lose to human agreement levels. Automati
ally 
re-ating preliminary-labels, either from keywords or othersour
es, avoids the signi�
ant human e�ort of hand-labeling training data.In future work we plan to re�ne our probabilisti
model to allow for do
uments to be pla
ed in interior hi-erar
hy nodes, do
uments to have multiple 
lass assign-ments, and multiple mixture 
omponents per 
lass. Weare also investigating prin
ipled methods of re-weightingthe word features for \semi-supervised" 
lustering thatwill provide better dis
riminative training with unla-beled data.4 Information Extra
tionInformation extra
tion is 
on
erned with identifyingphrases of interest in textual data. In the 
ase of asear
h engine over resear
h papers, the automati
 ex-tra
tion of informative text segments 
an be used to (1)allow sear
hes over spe
i�
 �elds, (2) provide useful ef-fe
tive presentation of sear
h results (e.g. showing titlein bold), and (3) mat
h referen
es to papers. We haveinvestigated te
hniques for extra
ting the �elds relevantto resear
h papers, su
h as title, author, and journal,from both the headers and referen
e se
tions of papers.Our information extra
tion approa
h is based on hid-den Markov models (HMMs) and their a

ompanyingsear
h te
hniques that are widely used for spee
h re
og-nition and part-of-spee
h tagging [Rabiner, 1989℄. Dis-
rete output, �rst-order HMMs are 
omposed of a set ofstates Q, whi
h emit symbols from a dis
rete vo
abulary�, and a set of transitions between states (q ! q0). A
ommon goal of learning problems that use HMMs is tore
over the state sequen
e V (xjM) that has the high-est probability of having produ
ed some observation se-quen
e x = x1x2 : : : xl 2 ��:
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Figure 3: Illustrative example of an HMM for referen
eextra
tion.V (xjM)= argmaxq1 :::ql2Ql lYk=1P(qk�1 ! qk)P(qk " xk); (3)where M is the model, P(qk�1 ! qk) is the probability oftransitioning between states qk�1 and qk, and P(qk " xk)is the probability of state qk emitting output symbolxk. The Viterbi algorithm [Viterbi, 1967℄ 
an be used toeÆ
iently re
over this state sequen
e.HMMs may be used for extra
ting information fromresear
h papers by formulating a model in the followingway: ea
h state is asso
iated with a 
lass that we wantto extra
t, su
h as title, author, or aÆliation. Ea
h stateemits words from a 
lass-spe
i�
 unigram distribution.In order to label new text with 
lasses, we treat the wordsfrom the new text as observations and re
over the most-likely state sequen
e. The state that produ
es ea
h wordis the 
lass tag for that word. An illustrative example ofan HMM for referen
e extra
tion is shown in Figure 3.Our work with HMMs for information extra
tion fo-
uses on learning the appropriate model stru
ture (thenumber of states and transitions) automati
ally fromdata. Other systems using HMMs for information ex-tra
tion in
lude that by Leek [1997℄, whi
h extra
ts in-formation about gene names and lo
ations from s
ienti�
abstra
ts, and the Nymble system [Bikel et al., 1997℄ fornamed-entity extra
tion. These systems do not 
onsiderautomati
ally determining model stru
ture from data;they either use one state per 
lass, or use hand-builtmodels assembled by inspe
ting training examples.4.1 ExperimentsThe goal of our information extra
tion experiments isto investigate whether a model with multiple states per
lass, either manually or automati
ally derived, outper-forms a model with only one state per 
lass for headerextra
tion. We de�ne the header of a resear
h paperto be all of the words from the beginning of the paper

up to either the �rst se
tion of the paper, usually theintrodu
tion, or to the end of the �rst page, whi
hevero

urs �rst. A single token, either +INTRO+ or +PAGE+,is added to the end of ea
h header to indi
ate the 
asewith whi
h it terminated. Likewise, the abstra
t is auto-mati
ally lo
ated and substituted with the single token+ABSTRACT+. A few spe
ial 
lasses of words are identi-�ed using simple regular expressions and 
onverted totokens su
h as +EMAIL+. All pun
tuation, 
ase and new-line information is removed from the text. The target
lasses we wish to identify in
lude the following �fteen
ategories: title, author, aÆliation, address, note, email,date, abstra
t, introdu
tion, phone, keywords, web, de-gree, publi
ation number, and page.Manually tagged headers are split into a 500-header,23,557 word token labeled training set and a 435-header,20,308 word token test set. Unigram language modelsare built for ea
h 
lass and smoothed using a modi�edform of absolute dis
ounting. Ea
h state uses its 
lassunigram distribution as its emission distribution.We 
ompare the performan
e of a model with one stateper 
lass (Baseline) to that of models with multiple statesper 
lass (M-merged, V-merged). The multi-state modelsare derived from training data in the following way: amaximally-spe
i�
 HMM is built where ea
h word tokenin the training set is assigned a single state that onlytransitions to the state that follows it. Ea
h state is as-so
iated with the 
lass label of its word token. Then,the HMM is put through a series of state merges in or-der to generalize the model. First, \neighbor merging"
ombines all states that share a unique transition andhave the same 
lass label. For example, all adja
ent titlestates are merged into one title state. As two states aremerged, transition 
ounts are preserved, introdu
ing aself-loop on the new merged state. The neighbor-mergedmodel is used as the starting point for the two multi-statemodels. Manual merge de
isions are made in an itera-tive manner to produ
e the M-merged model, and an au-tomati
 forward and ba
kward V-merging pro
edure isused to produ
e the V-mergedmodel. V-merging 
onsistsof merging any two states that share transitions from orto a 
ommon state and have the same label. Transitionprobabilities for the three models are set to their max-imum likelihood estimates; the baseline model takes itstransition 
ounts dire
tly from the labeled training data,whereas the multi-state models use the 
ounts that havebeen preserved during the state merging pro
ess.Model performan
e is measured by word 
lassi�
ationa

ura
y, whi
h is the per
entage of header words thatare emitted by a state with the same label as the words'true label. Extra
tion results are presented in Table 1.Hidden Markov models do well at extra
ting header in-formation; the best performan
e of 91.1% is obtainedwith the M-merged model. Both of the multi-state mod-els outperform the Baseline model, indi
ating that theri
her representation available through models derivedfrom data is bene�
ial. However, the automati
ally-derived V-merged model does not perform as well as themanually-derivedM-mergedmodel. The V-mergedmodel
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Number of Number ofModel states transitions A

ura
yBaseline 17 149 89.8M-merged 36 164 91.1V-merged 155 402 90.2Table 1: Extra
tion a

ura
y (%) for the Baseline, M-merged and V-merged models.is limited in the state merges it 
an perform, whereas theM-merged model is unrestri
ted. We expe
t that moresophisti
ated state merging te
hniques, as dis
ussed in[Seymore et al., 1999℄, will result in superior-performingmodels for information extra
tion.5 Related WorkSeveral related resear
h proje
ts are investigating the au-tomati
 
onstru
tion of spe
ial-purpose web sites. TheNew Zealand Digital Library proje
t [Witten et al.,1998℄ has 
reated publi
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lusionsThe amount of information available on the Internet 
on-tinues to grow exponentially. As this trend 
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hine learning te
hniques 
an sig-ni�
antly aid the 
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