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A Mahine Learning Approah to BuildingDomain-Spei� Searh EnginesAndrew MCallumzymallum�justresearh.om Kamal Nigamyknigam�s.mu.edu Jason Rennieyjr6b�andrew.mu.edu Kristie Seymoreykseymore�ri.mu.eduzJust Researh4616 Henry StreetPittsburgh, PA 15213 yShool of Computer SieneCarnegie Mellon UniversityPittsburgh, PA 15213AbstratDomain-spei� searh engines are beominginreasingly popular beause they o�er in-reased auray and extra features not pos-sible with general, Web-wide searh engines.Unfortunately, they are also diÆult and time-onsuming to maintain. This paper proposesthe use of mahine learning tehniques togreatly automate the reation and maintenaneof domain-spei� searh engines. We desribenew researh in reinforement learning, textlassi�ation and information extration thatenables eÆient spidering, populates topi hi-erarhies, and identi�es informative text seg-ments. Using these tehniques, we have builta demonstration system: a searh engine foromputer siene researh papers available atwww.ora.justresearh.om.1 IntrodutionAs the amount of information on the World Wide Webgrows, it beomes inreasingly diÆult to �nd just whatwe want. While general-purpose searh engines suh asAltavista and HotBot o�er high overage, they often pro-vide only low preision, even for detailed queries.When we know that we want information of a er-tain type, or on a ertain topi, a domain-spei�searh engine an be a powerful tool. For exam-ple, www.ampsearh.om allows omplex queries oversummer amps by age-group, size, loation and ost.Performing suh searhes with a traditional, general-purpose searh engine would be extremely tedious orimpossible. For this reason, domain-spei� searh en-gines are beoming inreasingly popular. Unfortunately,building these searh engines is a labor-intensive proess,typially requiring signi�ant and ongoing human e�ort.This paper desribes the Ra Projet|an e�ort to auto-mate many aspets of reating and maintaining domain-spei� searh engines by using mahine learning teh-niques. These tehniques allow searh engines to bereated quikly with minimal e�ort, and are suited forre-use aross many domains. This paper presents ma-hine learning methods for eÆient topi-direted spider-

ing, building a browsable topi hierarhy, and extratingtopi-relevant substrings. These are briey desribed inthe following three paragraphs.Every searh engine must begin with a olletionof douments to index. When aiming to populate adomain-spei� searh engine, a web-rawling spiderneed not explore the Web indisriminantly, but shouldexplore in a direted fashion to �nd domain-relevant do-uments eÆiently. We frame the spidering task in a rein-forement learning framework [Kaelbling et al., 1996℄, al-lowing us to mathematially de�ne \optimal behavior."Our experimental results show that a simple reinfore-ment learning spider is three times more eÆient than aspider using breadth-�rst searh.Searh engines often provide a browsable topi hierar-hy; Yahoo is the prototypial example. Automatiallyadding douments into a topi hierarhy an be posed asa text lassi�ation task. We present extensions to thenaive Bayes text lassi�er (e.g. [MCallum et al., 1998℄)that use no hand-labeled training data, yet still resultin aurate lassi�ation. With unlabeled data, the hi-erarhy and a few keywords for eah ategory, the algo-rithm ombines naive Bayes, hierarhial shrinkage andExpetation-Maximization. It plaes douments into a70-leaf omputer siene hierarhy with 66% auray|performane approahing human agreement levels.Extrating topi-relevant piees of information fromthe douments of a domain-spei� searh engine al-lows the user to searh over these features in a way thatgeneral searh engines annot. Information extration,the proess of automatially �nding spei� textual sub-strings in a doument, is well suited to this task. Weapproah information extration with tehniques usedin statistial language modeling and speeh reognition,namely hidden Markov models [Rabiner, 1989℄. Our al-gorithm extrats �elds suh as title, authors, and aÆlia-tion from researh paper headers with 91% auray.We have brought all the above-desribed mahinelearning tehniques together in Cora, a publily-availablesearh engine on omputer siene researh papers(www.ora.justresearh.om). An intelligent spider startsfrom the home pages of omputer siene departmentsand laboratories and ollets links to postsript dou-ments. These douments are onverted to plain text
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Figure 1: A sreen shot of the query results page of theCora searh engine. Note the topi hierarhy and theextrated paper titles, authors and abstrats.and further proessed if they are determined to be re-searh papers (e.g. by having Abstrat and Referenesetions). Important identifying information suh as thetitle and author is then extrated from the head of eahpaper, as well as the bibliography setion. The extratedresults are used to group itations to the same papertogether and to build a itation graph. Phrase andkeyword searh failities over the olleted papers areprovided, as well as a omputer siene topi hierarhywhih lists the most-ited papers in eah researh topi.Figure 1 shows the results of a searh query as well as thetopi hierarhy. Our hope is that, in addition to provid-ing a platform for mahine learning researh, this searhengine will beome a valuable tool for other omputersientists. The following setions desribe the new re-searh that makes Cora possible; more detail is providedin MCallum et al. [1999℄ and by other papers availableat Cora's web page.2 EÆient SpideringIn Cora, eÆient spidering is a signi�ant onern. Manyof the pages in CS department web sites are aboutourses and administration, not researh papers. Whilea general-purpose searh engine should index all pages,and might use breadth-�rst searh to ollet douments,Cora need only index a small subset. Avoiding wholeregions of departmental web graphs an signi�antly im-prove eÆieny and inrease the number of researh pa-pers found given a �nite amount of time.For a formal setting in whih to frame the problem

of eÆient spidering, we turn to reinforement learn-ing. Reinforement learning is a framework for learn-ing optimal deision making from rewards or punishment[Kaelbling et al., 1996℄. The agent learns a poliy thatmaps states to ations in an e�ort to maximize its re-ward over time. We use the in�nite-horizon disountedmodel where reward over time is a geometrially dis-ounted sum in whih the disount, 0 �  < 1, devaluesrewards reeived in the future. A Q-funtion repre-sents the poliy by mapping state-ation pairs to theirexpeted disounted reward. Poliy deisions are madeby seleting the ation with the largest Q-value.As an aid to understanding how reinforement learn-ing relates to spidering, onsider the ommon reinfore-ment learning task of a mouse exploring a maze to �ndseveral piees of heese. The agent reeives immediatereward for �nding eah piee of heese, and has ationsfor moving among the grid squares of the maze. Thestate is both the position of the mouse and the loationsof the heese piees remaining to be onsumed (sine theheese an only be onsumed and provide reward one).Note that in order to at optimally, the agent must on-sider future rewards.In the spidering task, the on-topi douments are im-mediate rewards, like the piees of heese. The ationsare following a partiular hyperlink. The state is the setof on-topi douments remaining to be onsumed, andthe set of ations that have been disovered. The key fea-ture of topi-spei� spidering that makes reinforementlearning the proper framework is that the environmentpresents situations with delayed reward.The problem now is how to pratially apply reinfore-ment learning to spidering. The state-spae is enormousand does not allow the spider to generalize to hyperlinksthat it has not already seen. Hene, we make simplify-ing assumptions that (1) disregard state and (2) apturethe relevant distintions between ations as the wordsfound in the neighborhood of the orresponding hyper-link. Thus our Q-funtion beomes a mapping from a\bag-of-words" to a salar.We represent the mapping using a olletion of naiveBayes text lassi�ers (see Setion 3.1), and ast this re-gression problem as lassi�ation. We disretize the dis-ounted sum of future reward values of our training datainto bins, plae eah hyperlink into the bin orrespond-ing to its Q-value (alulated as desribed below), anduse the text in the hyperlink's anhor and surroundingpage as training data for the lassi�er. At test time, theestimated Q-value of a hyperlink is the weighted aver-age of eah bin's average Q-value, using the lassi�er'sprobabilisti lass memberships as weights.Other systems have also studied spidering, but with-out a framework de�ning optimal behavior. For exam-ple, Arahnid [Menzer, 1997℄ does so with a olletionof ompetitive, reproduing and mutating agents. Addi-tionally, there are systems that use reinforement learn-ing for non-spidering Web tasks. WebWather [Joahimset al., 1997℄ is a browsing assistant that uses a ombina-tion of supervised and reinforement learning to reom-
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Figure 2: Performane of two reinforement learningspiders versus traditional breadth-�rst searh, averagedover four test/train splits with data from four CS de-partments.mend relevant hyperlinks to the user.2.1 Experimental ResultsIn August 1998 we fully mapped the CS department websites at Brown University, Cornell University, Universityof Pittsburgh and University of Texas. They inlude53,012 douments and 592,216 hyperlinks. We performfour test/train splits, where the data from three univer-sities is used to train a spider that is tested on the fourth.The target pages (for whih a reward of 1 is given) areomputer siene researh papers, identi�ed separatelyby a simple hand-oded algorithm with high preision.We urrently train the agent o�-line. We �nd all tar-get pages in the training data, and alulate the Q-valueassoiated with eah hyperlink as the disounted sumof rewards that result from exeuting the optimal pol-iy (as determined by full knowledge of the web graph).The agent ould also learn from experiene on-line us-ing TD-�. A spider is evaluated on eah test/train splitby having it spider the test university, starting at thedepartment's home page. In Figure 2 we report resultsfrom traditional Breadth-First searh as well as two dif-ferent reinforement learners. Immediate uses  = 0,and represents the Q-funtion as a binary lassi�er thatonly distinguishes immediate reward ations. Future uses = 0:5, and represents the Q-funtion with a more�nely-disriminating 3-bin lassi�er that uses future re-wards.At all times during its progress, both reinforementlearning spiders have found more researh papers thanbreadth-�rst searh. One measure of performane is thenumber of hyperlinks followed before 75% of the researhpapers are found. Both reinforement learners are signif-iantly more eÆient, requiring exploration of less than16% of the hyperlinks; in omparison, Breadth-�rst re-quires 48%. This represents a fator of three inrease inspidering eÆieny.Note that the Future reinforement learning spider

performs better than the Immediate spider in the begin-ning, when future reward must be used to selet amongalternative branhes, none of whih give immediate re-ward. On average the Immediate spider takes nearlythree times as long as Future to �nd the �rst 28 (5%)of the papers. We have also run experiments on taskswith a single target page, where future reward deisionsare more ruial. In this ase, the Future spider retrievestarget pages twie as eÆiently as the Immediate spider[Rennie and MCallum, 1999℄. In Figure 2, after the�rst 50% of the papers are found, the Immediate spi-der performs slightly better, beause many links withimmediate reward have been disovered, and the Imme-diate spider reognizes them more aurately. In ongoingwork we are improving the auray of the lassi�ationwhen there is future reward and a larger number of bins.3 Classi�ation into a Hierarhy byBootstrapping with KeywordsTopi hierarhies are an eÆient way to organize andview large quantities of information that would other-wise be umbersome. As Yahoo has shown, a topihierarhy an be an integral part of a searh engine. ForCora, we have reated a 70-leaf hierarhy of omputer si-ene topis, the top part of whih is shown in Figure 1.Creating the hierarhy struture and seleting just a fewkeywords assoiated with eah node took about threehours, during whih an expert examined onferene pro-eedings and omputer siene Web sites.A muh more diÆult and time-onsuming part of re-ating a hierarhy is plaing douments into the orrettopi nodes. Yahoo has hired many people to atego-rize web pages into their hierarhy. In ontrast, ma-hine learning an automate this task with supervisedtext lassi�ation. However, aquiring enough labeledtraining douments to build an aurate lassi�er is of-ten prohibitively expensive.In this paper, we ease the burden on the lassi�erbuilder by using only unlabeled data, some keywordsand the lass hierarhy. Instead of asking the builderto hand-label training examples, the builder simply pro-vides a few keywords for eah ategory. A large olletionof unlabeled douments are then preliminarily labeledby using the keywords as a rule-list lassi�er (searhinga doument for eah keyword and plaing it in the lassof the �rst keyword found). These preliminary labelsare noisy, and many douments remain unlabeled. How-ever, we then bootstrap an improved lassi�er. Using thedouments and preliminary labels, we initialize a naiveBayes text lassi�er from the preliminary labels. Then,Expetation-Maximization [Dempster et al., 1977℄ esti-mates labels of unlabeled douments and re-estimateslabels of keyword-labeled douments. Statistial shrink-age is also inorporated in order to improve parameterestimates by using the lass hierarhy. In this paper weombine for the �rst time in one doument lassi�er bothEM for unlabeled data and hierarhial shrinkage.
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3.1 Bayesian Text Classi�ationWe use the framework of multinomial naive Bayes textlassi�ation. The parameters of this model are, for eahlass j , the frequeny with whih eah word wt ours,P(wtjj), and the relative doument frequeny of eahlass, P(j). Given estimates of these parameters and adoument di, we an determine the probability that itbelongs in lass j by Bayes' rule:P(j jdi) / P(j) jdijYk=1P(wdik jj); (1)where wdik is the word wt that ours in the kth posi-tion of doument di. Training a standard naive Bayeslassi�er requires a set of douments, D, and their lasslabels. The estimate of a word frequeny is simply thesmoothed frequeny with whih the word ours in train-ing douments from the lass:P(wtjj)= 1 +Pdi2DN(wt; di)P(j jdi)jV j+PjV js=1Pdi2DN(ws; di)P(j jdi) ; (2)where N(wt; di) is the number of times word wt oursin doument di, P(j jdi) is an indiator of whether do-ument di belongs in lass j , and jV j is the number ofwords in the voabulary. Similarly, the lass frequen-ies P(j) are smoothed doument frequenies estimatedfrom the data.When a ombination of labeled and unlabeled data isavailable, past work has shown that naive Bayes param-eter estimates an be improved by using EM to ombineevidene from all the data [Nigam et al., 1999℄. In ourbootstrapping approah, an initial naive Bayes modelis estimated from the preliminarily-labeled data. ThenEM iterates until onvergene (1) labeling all the data(Equation 1) and (2) rebuilding a model with all the data(Equation 2). The preliminary labels serve to provide agood starting point; EM then inorporates the unlabeleddata and re-estimates the preliminary labels.When the lasses are organized hierarhially, as is ourase, naive Bayes parameter estimates an be improvedwith the statistial tehnique shrinkage [MCallum etal., 1998℄. New word frequeny parameter estimates fora lass are alulated by a weighted average between thelass's loal estimates, and estimates of its anestors inthe hierarhy (eah formed by pooling data from all theanestor's hildren). The tehnique balanes a trade-o� between the spei�ity of the unreliable loal wordfrequeny estimates and the reliability of the more gen-eral anestor's frequeny estimates. The optimal mix-ture weights for the weighted average are alulated byEM onurrently with the lass labels.3.2 Experimental ResultsNow we desribe results of lassifying omputer sieneresearh papers into our 70-leaf hierarhy. A test setwas reated by hand-labeling a random sample of 625researh papers from the 30,682 papers formerly om-prising the entire Cora arhive. Of these, 225 did not �t

into any ategory, and were disarded. In these experi-ments, we used the title, author, institution, referenes,and abstrats of papers for lassi�ation, not the fulltext.Traditional naive Bayes with 400 labeled training do-uments, tested in a leave-one-out fashion, results in 47%lassi�ation auray. However, less than 100 dou-ments ould have been hand-labeled in the 90 minutesit took to reate the keyword-lists; using this smallertraining set results in only 30% auray. The rule-listlassi�er based on the keywords alone provides 45%. Wenow turn to our bootstrap approah. When these noisylabels are used to train a traditional naive Bayes textlassi�er, 47% auray is reahed on the test set. Thefull algorithm, inluding EM and hierarhial shrinkage,ahieves 66% auray. As an interesting omparison,human agreement between two people on the test setwas 72%.These results demonstrate the utility of the boot-strapping approah. Keyword mathing alone is noisy,but when naive Bayes and EM are used together asa regularizer, the resulting lassi�ation auray islose to human agreement levels. Automatially re-ating preliminary-labels, either from keywords or othersoures, avoids the signi�ant human e�ort of hand-labeling training data.In future work we plan to re�ne our probabilistimodel to allow for douments to be plaed in interior hi-erarhy nodes, douments to have multiple lass assign-ments, and multiple mixture omponents per lass. Weare also investigating prinipled methods of re-weightingthe word features for \semi-supervised" lustering thatwill provide better disriminative training with unla-beled data.4 Information ExtrationInformation extration is onerned with identifyingphrases of interest in textual data. In the ase of asearh engine over researh papers, the automati ex-tration of informative text segments an be used to (1)allow searhes over spei� �elds, (2) provide useful ef-fetive presentation of searh results (e.g. showing titlein bold), and (3) math referenes to papers. We haveinvestigated tehniques for extrating the �elds relevantto researh papers, suh as title, author, and journal,from both the headers and referene setions of papers.Our information extration approah is based on hid-den Markov models (HMMs) and their aompanyingsearh tehniques that are widely used for speeh reog-nition and part-of-speeh tagging [Rabiner, 1989℄. Dis-rete output, �rst-order HMMs are omposed of a set ofstates Q, whih emit symbols from a disrete voabulary�, and a set of transitions between states (q ! q0). Aommon goal of learning problems that use HMMs is toreover the state sequene V (xjM) that has the high-est probability of having produed some observation se-quene x = x1x2 : : : xl 2 ��:
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Figure 3: Illustrative example of an HMM for refereneextration.V (xjM)= argmaxq1 :::ql2Ql lYk=1P(qk�1 ! qk)P(qk " xk); (3)where M is the model, P(qk�1 ! qk) is the probability oftransitioning between states qk�1 and qk, and P(qk " xk)is the probability of state qk emitting output symbolxk. The Viterbi algorithm [Viterbi, 1967℄ an be used toeÆiently reover this state sequene.HMMs may be used for extrating information fromresearh papers by formulating a model in the followingway: eah state is assoiated with a lass that we wantto extrat, suh as title, author, or aÆliation. Eah stateemits words from a lass-spei� unigram distribution.In order to label new text with lasses, we treat the wordsfrom the new text as observations and reover the most-likely state sequene. The state that produes eah wordis the lass tag for that word. An illustrative example ofan HMM for referene extration is shown in Figure 3.Our work with HMMs for information extration fo-uses on learning the appropriate model struture (thenumber of states and transitions) automatially fromdata. Other systems using HMMs for information ex-tration inlude that by Leek [1997℄, whih extrats in-formation about gene names and loations from sienti�abstrats, and the Nymble system [Bikel et al., 1997℄ fornamed-entity extration. These systems do not onsiderautomatially determining model struture from data;they either use one state per lass, or use hand-builtmodels assembled by inspeting training examples.4.1 ExperimentsThe goal of our information extration experiments isto investigate whether a model with multiple states perlass, either manually or automatially derived, outper-forms a model with only one state per lass for headerextration. We de�ne the header of a researh paperto be all of the words from the beginning of the paper

up to either the �rst setion of the paper, usually theintrodution, or to the end of the �rst page, whiheverours �rst. A single token, either +INTRO+ or +PAGE+,is added to the end of eah header to indiate the asewith whih it terminated. Likewise, the abstrat is auto-matially loated and substituted with the single token+ABSTRACT+. A few speial lasses of words are identi-�ed using simple regular expressions and onverted totokens suh as +EMAIL+. All puntuation, ase and new-line information is removed from the text. The targetlasses we wish to identify inlude the following �fteenategories: title, author, aÆliation, address, note, email,date, abstrat, introdution, phone, keywords, web, de-gree, publiation number, and page.Manually tagged headers are split into a 500-header,23,557 word token labeled training set and a 435-header,20,308 word token test set. Unigram language modelsare built for eah lass and smoothed using a modi�edform of absolute disounting. Eah state uses its lassunigram distribution as its emission distribution.We ompare the performane of a model with one stateper lass (Baseline) to that of models with multiple statesper lass (M-merged, V-merged). The multi-state modelsare derived from training data in the following way: amaximally-spei� HMM is built where eah word tokenin the training set is assigned a single state that onlytransitions to the state that follows it. Eah state is as-soiated with the lass label of its word token. Then,the HMM is put through a series of state merges in or-der to generalize the model. First, \neighbor merging"ombines all states that share a unique transition andhave the same lass label. For example, all adjaent titlestates are merged into one title state. As two states aremerged, transition ounts are preserved, introduing aself-loop on the new merged state. The neighbor-mergedmodel is used as the starting point for the two multi-statemodels. Manual merge deisions are made in an itera-tive manner to produe the M-merged model, and an au-tomati forward and bakward V-merging proedure isused to produe the V-mergedmodel. V-merging onsistsof merging any two states that share transitions from orto a ommon state and have the same label. Transitionprobabilities for the three models are set to their max-imum likelihood estimates; the baseline model takes itstransition ounts diretly from the labeled training data,whereas the multi-state models use the ounts that havebeen preserved during the state merging proess.Model performane is measured by word lassi�ationauray, whih is the perentage of header words thatare emitted by a state with the same label as the words'true label. Extration results are presented in Table 1.Hidden Markov models do well at extrating header in-formation; the best performane of 91.1% is obtainedwith the M-merged model. Both of the multi-state mod-els outperform the Baseline model, indiating that theriher representation available through models derivedfrom data is bene�ial. However, the automatially-derived V-merged model does not perform as well as themanually-derivedM-mergedmodel. The V-mergedmodel
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Number of Number ofModel states transitions AurayBaseline 17 149 89.8M-merged 36 164 91.1V-merged 155 402 90.2Table 1: Extration auray (%) for the Baseline, M-merged and V-merged models.is limited in the state merges it an perform, whereas theM-merged model is unrestrited. We expet that moresophistiated state merging tehniques, as disussed in[Seymore et al., 1999℄, will result in superior-performingmodels for information extration.5 Related WorkSeveral related researh projets are investigating the au-tomati onstrution of speial-purpose web sites. TheNew Zealand Digital Library projet [Witten et al.,1998℄ has reated publily-available searh engines fordomains from omputer siene tehnial reports to songmelodies using manually identi�ed web soures. TheCiteSeer projet [Bollaker et al., 1998℄ has also devel-oped a searh engine for omputer siene researh pa-pers that provides similar funtionality for mathing ref-erenes and searhing. The WebKB projet [Craven etal., 1998℄ uses mahine learning tehniques to extratdomain-spei� information available on the Web into aknowledge base. The WHIRL projet [Cohen, 1998℄ is ane�ort to integrate a variety of topi-spei� soures into asingle domain-spei� searh engine using hand-writtenextration patterns and fuzzy mathing for informationretrieval searhing.6 ConlusionsThe amount of information available on the Internet on-tinues to grow exponentially. As this trend ontinues,we argue that, not only will the publi need powerfultools to help them sort though this information, but thereators of these tools will need intelligent tehniquesto help them build and maintain these tools. This pa-per has shown that mahine learning tehniques an sig-ni�antly aid the reation and maintenane of domain-spei� searh engines. We have presented new researhin reinforement learning, text lassi�ation and infor-mation extration towards this end. In future work, wewill apply mahine learning to automate more aspets ofdomain-spei� searh engines, suh as reating a topihierarhy with lustering and automatially identifyingseminal papers with itation graph analysis.Referenes[Bikel et al., 1997℄ D. Bikel, S. Miller, R. Shwartz, andR. Weishedel. Nymble: a high-performane learningname-�nder. In ANLP-97, 1997.

[Bollaker et al., 1998℄ K. Bollaker, S. Lawrene, and C. L.Giles. CiteSeer: An autonomous web agent for automatiretrieval and identi�ation of interesting publiations. InAgents '98, 1998.[Cohen, 1998℄ W. Cohen. A web-based information systemthat reasons with strutured olletions of text. In Agents'98, 1998.[Craven et al., 1998℄ M. Craven, D. DiPasquo, D. Freitag,A. MCallum, T. Mithell, K. Nigam, and S. Slattery.Learning to extrat symboli knowledge from the WorldWide Web. In AAAI-98, 1998.[Dempster et al., 1977℄ A. P. Dempster, N. M. Laird, andD. B. Rubin. Maximum likelihood from inomplete datavia the EM algorithm. Journal of the Royal StatistialSoiety, Series B, 39(1):1{38, 1977.[Joahims et al., 1997℄ T. Joahims,D. Freitag, and T. Mithell. Webwather: A tour guidefor the World Wide Web. In IJCAI-97, 1997.[Kaelbling et al., 1996℄ L. Kaelbling, M. Littman, andA. Moore. Reinforement learning: A survey. Journalof Arti�ial Intelligene Researh, 4:237{285, 1996.[Leek, 1997℄ T. Leek. Information extration using hiddenMarkov models. Master's thesis, UCSD, 1997.[MCallum et al., 1998℄ A. MCallum, R. Rosenfeld,T. Mithell, and A. Ng. Improving text lasi�ation byshrinkage in a hierarhy of lasses. In ICML-98, 1998.[MCallum et al., 1999℄ A. MCallum, K. Nigam, J. Rennie,and K. Seymore. Building domain-spei� searh engineswith mahine learning tehniques. In AAAI Spring Sym-posium on Intelligent Agents in Cyberspae, 1999.[Menzer, 1997℄ F. Menzer. ARACHNID: Adaptive re-trieval agents hoosing heuristi neighborhoods for infor-mation disovery. In ICML-97, 1997.[Nigam et al., 1999℄ K. Nigam, A. MCallum, S. Thrun, andT. Mithell. Text lassi�ation from labeled and unlabeleddouments using EM. Mahine Learning, 1999. To appear.[Rabiner, 1989℄ L. R. Rabiner. A tutorial on hidden Markovmodels and seleted appliations in speeh reognition.Proeedings of the IEEE, 77(2):257{286, 1989.[Rennie and MCallum, 1999℄ Jason Rennie and AndrewMCallum. Using reinforement learning to spider the WebeÆiently. In ICML-99, 1999.[Seymore et al., 1999℄ K. Seymore, A. MCallum, andR. Rosenfeld. Learning hidden Markov model struturefor information extration. In AAAI Workshop on Ma-hine Learning for Information Extration, 1999.[Viterbi, 1967℄ A. J. Viterbi. Error bounds for onvolutionalodes and an asymtotially optimum deoding algorithm.IEEE Transations on Information Theory, IT-13:260{269, 1967.[Witten et al., 1998℄ I. Witten, C. Nevill-Manning, R. M-Nab, and S. J. Cunnningham. A publi digital librarybased on full-text retrieval: Colletions and experiene.Communiations of the ACM, 41(4):71{75, 1998.


